15. Duality

- Upper and lower bounds
- General duality
- Constraint qualifications
- Counterexample
- Complementary slackness
- Examples
- Sensitivity analysis

Upper bounds

Optimization problem (not necessarily convex!):

$$
\begin{aligned}
\underset{x \in D}{\operatorname{minimize}} & f_{0}(x) \\
\text { subject to: } & f_{i}(x) \leq 0 \quad \text { for } i=1, \ldots, m \\
& h_{j}(x)=0 \text { for } j=1, \ldots, r
\end{aligned}
$$

- D is the domain of all functions involved.
- Suppose the optimal value is p^{\star}.
- Upper bounds: if $x \in D$ satisfies $f_{i}(x) \leq 0$ and $h_{j}(x)=0$ for all i and j, then: $p^{\star} \leq f_{0}(x)$.
- Any feasible x yields an upper bound for p^{\star}.

Lower bounds

Optimization problem (not necessarily convex!):

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & f_{0}(x) \\
\text { subject to: } & f_{i}(x) \leq 0 \text { for } i=1, \ldots, m \\
& h_{j}(x)=0 \text { for } j=1, \ldots, r
\end{aligned}
$$

- As with LPs, use the constraints to find lower bounds
- For any $\lambda_{i} \geq 0$ and $\nu_{j} \in \mathbb{R}$, if $x \in D$ is feasible, then

$$
f_{0}(x) \geq f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{j=1}^{r} \nu_{j} h_{j}(x)
$$

Lower bounds

$$
f_{0}(x) \geq \underbrace{f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{j=1}^{r} \nu_{j} h_{j}(x)}_{\text {Lagrangian } L(x, \lambda, \nu)}
$$

This is a lower bound on f_{0}, but we want a lower bound on p^{\star}. Minimize right side over $x \in D$ and left side over feasible x.

$$
p^{\star} \geq\left\{\inf _{x \in D} L(x, \lambda, \nu)\right\}=g(\lambda, \nu)
$$

This inequality holds whenever $\lambda \geq 0$.

Lower bounds

$$
L(x, \lambda, \nu):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{j=1}^{r} \nu_{j} h_{j}(x)
$$

Whenever $\lambda \geq 0$, we have:

$$
g(\lambda, \nu):=\left\{\inf _{x \in D} L(x, \lambda, \nu)\right\} \leq p^{\star}
$$

Useful fact: $g(\lambda, \nu)$ is a concave function. This is true even if the original optimization problem is not convex!
(because g is a pointwise minimum of affine functions)

General duality

Primal problem (P)

Dual problem (D)

$$
\begin{array}{cc}
\underset{x \in D}{\operatorname{minimize}} & f_{0}(x) \\
\text { subject to: } & f_{i}(x) \leq 0 \quad \forall i \\
& h_{j}(x)=0 \quad \forall j
\end{array}
$$

```
M, maximize
subject to: \lambda\geq0
```

If x and λ are feasible points of (P) and (D) respectively:

$$
g(\lambda, \nu) \leq d^{\star} \leq p^{\star} \leq f_{0}(x)
$$

This is called the Lagrange dual. Bad news: strong duality ($p^{\star}=d^{\star}$) does not always hold!

Example (Srikant)

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & x^{2}+1 \\
\text { subject to: } & (x-2)(x-4) \leq 0
\end{aligned}
$$

$$
\begin{aligned}
& =x^{2}+1 \\
& =(x-2)(x-4)
\end{aligned}
$$

- optimum occurs at $x=2$, has value $p^{\star}=5$

Example (Srikant)

Lagrangian: $\quad L(x, \lambda)=x^{2}+1+\lambda(x-2)(x-4)$

- Plot for different values of $\lambda \geq 0$
- $g(\lambda)=\inf _{x} L(x, \lambda)$ should be a lower bound on $p^{\star}=5$ for all $\lambda \geq 0$.

Example (Srikant)

Lagrangian: $\quad L(x, \lambda)=x^{2}+1+\lambda(x-2)(x-4)$

- Minimize the Lagrangian:

$$
\begin{aligned}
g(\lambda) & =\inf _{x} L(x, \lambda) \\
& =\inf _{x}(\lambda+1) x^{2}-6 \lambda x+(8 \lambda+1)
\end{aligned}
$$

If $\lambda \leq-1$, it is unbounded. If $\lambda>-1$, the minimum occurs when $2(\lambda+1) x-6 \lambda=0$, so $\hat{x}=\frac{3 \lambda}{\lambda+1}$.

$$
g(\lambda)= \begin{cases}-9 \lambda^{2} /(1+\lambda)+1+8 \lambda & \lambda>-1 \\ -\infty & \lambda \leq-1\end{cases}
$$

Example (Srikant)

$$
\begin{aligned}
\underset{\lambda}{\operatorname{maximize}} & -9 \lambda^{2} /(1+\lambda)+1+8 \lambda \\
\text { subject to: } & \lambda \geq 0
\end{aligned}
$$

- optimum occurs at $\lambda=2$, has value $d^{\star}=5$
- same optimal value as primal problem! (strong duality)

Constraint qualifications

- weak duality $\left(d^{\star} \leq p^{\star}\right)$ always holds. Even when the optimization problem is not convex.
- strong duality $\left(d^{\star}=p^{\star}\right)$ often holds for convex problems (but not always).

A constraint qualification is a condition that guarantees strong duality. An example we've already seen:

- If the optimization problem is an LP, strong duality holds

Slater's constraint qualification

$$
\begin{aligned}
\underset{x \rightarrow D}{\operatorname{minimize}} & f_{0}(x) \\
\text { subject to: } & f_{i}(x) \leq 0 \text { for } i=1, \ldots, m \\
& h_{j}(x)=0 \text { for } j=1, \ldots, r
\end{aligned}
$$

Slater's constraint qualification:
If the optimization problem is convex and strictly feasible, then strong duality holds.

- convexity requires: D and f_{i} are convex and h_{j} are affine.
- strict feasibility means there exists some \tilde{x} in the interior of D such that $f_{i}(\tilde{x})<0$ for $i=1, \ldots, m$.

Slater's constraint qualification

If the optimization problem is convex and strictly feasible, then strong duality holds.

- Good news: Slater's constraint qualification is rather weak. i.e. it is usually satisfied by convex problems.
- Can be relaxed so that strict feasibility is not required for the linear constraints.

Counterexample (Boyd)

$$
\begin{aligned}
\underset{x \in \mathbb{R}, y>0}{\operatorname{minimize}} & e^{-x} \\
\text { subject to: } & x^{2} / y \leq 0
\end{aligned}
$$

- The function x^{2} / y is convex for $y>0$ (see plot)
- The objective e^{-x} is convex
- Feasible set: $\{(0, y) \mid y>0\}$
- Solution is trivial $\left(p^{\star}=1\right)$

Counterexample (Boyd)

$$
\begin{aligned}
\underset{x \in \mathbb{R}, y>0}{\operatorname{minimize}} & e^{-x} \\
\text { subject to: } & x^{2} / y \leq 0
\end{aligned}
$$

- Lagrangian: $L(x, y, \lambda)=e^{-x}+\lambda x^{2} / y$
- Dual function: $g(\lambda)=\inf _{x, y>0}\left(e^{-x}+\lambda x^{2} / y\right)=0$.
- The dual problem is:

$$
\underset{1>0}{\operatorname{maximize}} 0
$$

So we have $d^{\star}=0<1=p^{\star}$.

- Slater's constraint qualification is not satisfied!

About Slater's constraint qualification

Slater's condition is only sufficient. (Slater) \Longrightarrow (strong duality)

- There exist problems where Slater's condition fails, yet strong duality holds.
- There exist nonconvex problems with strong duality.

Complementary slackness

Assume strong duality holds. If x^{\star} is primal optimal and $\left(\lambda^{\star}, \nu^{\star}\right)$ is dual optimal, then we have:

$$
g\left(\lambda^{\star}, \nu^{\star}\right)=d^{\star}=p^{\star}=f_{0}\left(x^{\star}\right)
$$

$$
\begin{aligned}
f_{0}\left(x^{\star}\right)=g\left(\lambda^{\star}, \nu^{\star}\right) & =\inf _{x \in D}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}(x)+\sum_{j=1}^{r} \nu_{j}^{\star} h_{j}(x)\right) \\
& \leq f_{0}\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}\left(x^{\star}\right)+\sum_{j=1}^{r} \nu_{j}^{\star} h_{j}\left(x^{\star}\right) \\
& \leq f_{0}\left(x^{\star}\right)
\end{aligned}
$$

The last inequality holds because x^{\star} is primal feasible. We conclude that the inequalities must all be equalities.

Complementary slackness

- We concluded that:

$$
f_{0}\left(x^{\star}\right)=f_{0}\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}\left(x^{\star}\right)+\sum_{j=1}^{r} \nu_{j}^{\star} h_{j}\left(x^{\star}\right)
$$

But $f_{i}\left(x^{\star}\right) \leq 0$ and $h_{j}\left(x^{\star}\right)=0$. Therefore:

$$
\lambda_{i}^{\star} f_{i}\left(x^{\star}\right)=0 \quad \text { for } i=1, \ldots, m
$$

- This property is called complementary slackness. We've seen it before for linear programs.

$$
\lambda_{i}^{\star}>0 \Longrightarrow f_{i}\left(x^{\star}\right)=0 \quad \text { and } \quad f_{i}\left(x^{\star}\right)<0 \Longrightarrow \lambda_{i}^{\star}=0
$$

Dual of an LP

$$
\begin{aligned}
\underset{x \geq 0}{\operatorname{minimize}} & c^{\top} x \\
\text { subject to: } & A x \geq b
\end{aligned}
$$

- Lagrangian: $L(x, \lambda)=c^{\top} x+\lambda^{\top}(b-A x)$
- Dual function: $g(\lambda)=\min _{x \geq 0}\left(c-A^{\top} \lambda\right)^{\top} x+\lambda^{\top} b$

$$
g(\lambda)= \begin{cases}\lambda^{\top} b & \text { if } A^{\top} \lambda \leq c \\ -\infty & \text { otherwise }\end{cases}
$$

Dual of an LP

$$
\begin{aligned}
\underset{x \geq 0}{\operatorname{minimize}} & c^{\top} x \\
\text { subject to: } & A x \geq b
\end{aligned}
$$

- Dual is:

$$
\begin{aligned}
\underset{\lambda \geq 0}{\operatorname{maximize}} & \lambda^{\top} b \\
\text { subject to: } & A^{\top} \lambda \leq c
\end{aligned}
$$

- This is the same result that we found when we were studying duality for linear programs.

Dual of an LP

What if we treat $x \geq 0$ as a constraint instead? $\left(D=\mathbb{R}^{n}\right)$.

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & c^{\top} x \\
\text { subject to: } & A x \geq b \\
& x \geq 0
\end{aligned}
$$

- Lagrangian: $L(x, \lambda, \mu)=c^{\top} x+\lambda^{\top}(b-A x)-\mu^{\top} x$
- Dual function: $g(\lambda, \mu)=\min _{x}\left(c-A^{\top} \lambda-\mu\right)^{\top} x+\lambda^{\top} b$

$$
g(\lambda)= \begin{cases}\lambda^{\top} b & \text { if } A^{\top} \lambda+\mu=c \\ -\infty & \text { otherwise }\end{cases}
$$

Dual of an LP

What if we treat $x \geq 0$ as a constraint instead? $\left(D=\mathbb{R}^{n}\right)$.

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & c^{\top} x \\
\text { subject to: } & A x \geq b \\
& x \geq 0
\end{aligned}
$$

- Dual is:

$$
\begin{aligned}
\underset{\lambda \geq 0, \mu \geq 0}{\operatorname{maximize}} & \lambda^{\top} b \\
\text { subject to: } & A^{\top} \lambda+\mu=c
\end{aligned}
$$

- Solution is the same, μ acts as the slack variable.

Dual of a convex QP

Suppose $Q \succ 0$. Let's find the dual of the QP:

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & \frac{1}{2} x^{\top} Q x \\
\text { subject to: } & A x \geq b
\end{aligned}
$$

- Lagrangian: $L(x, \lambda)=\frac{1}{2} x^{\top} Q x+\lambda^{\top}(b-A x)$
- Dual function: $g(\lambda)=\min _{x}\left(\frac{1}{2} x^{\top} Q x+\lambda^{\top}(b-A x)\right)$ Minimum occurs at: $\hat{x}=Q^{-1} A^{\top} \lambda$

$$
g(\lambda)=-\frac{1}{2} \lambda^{\top} A Q^{-1} A^{\top} \lambda+\lambda^{\top} b
$$

Dual of a convex QP

Suppose $Q \succ 0$. Let's find the dual of the QP:

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & \frac{1}{2} x^{\top} Q x \\
\text { subject to: } & A x \geq b
\end{aligned}
$$

- Dual is also a QP:

$$
\begin{aligned}
\underset{\lambda}{\operatorname{maximize}} & -\frac{1}{2} \lambda^{\top} A Q^{-1} A^{\top} \lambda+\lambda^{\top} b \\
\text { subject to: } & \lambda \geq 0
\end{aligned}
$$

- It's still easy to solve (maximizing a concave function)

Sensitivity analysis

$$
\begin{array}{lc}
\min _{x \in D} & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq u_{i} \quad \forall i \\
& h_{j}(x)=v_{j} \quad \forall j
\end{array}
$$

$$
\begin{array}{cc}
\max _{\lambda, \nu}^{\substack{2}} & g(\lambda, \nu)-\lambda^{\top} u-\nu^{\top} v \\
\text { s.t. } & \lambda \geq 0
\end{array}
$$

- As with LPs, dual variables quantify the sensitivity of the optimal cost to changes in each of the constraints.
- A change in u_{i} causes a bigger change in p^{\star} if λ_{i}^{\star} is larger.
- A change in v_{j} causes a bigger change in p^{\star} if ν_{j}^{\star} is larger.
- If $p^{\star}(u, v)$ is differentiable, then:

$$
\lambda_{i}^{\star}=-\frac{\partial p^{\star}(0,0)}{\partial u_{i}} \quad \text { and } \quad \nu_{j}^{\star}=-\frac{\partial p^{\star}(0,0)}{\partial v_{j}}
$$

