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Upper bounds

Optimization problem (not necessarily convex!):

minimize
x∈D

f0(x)

subject to: fi(x) ≤ 0 for i = 1, . . . ,m

hj(x) = 0 for j = 1, . . . , r

� D is the domain of all functions involved.

� Suppose the optimal value is p?.

� Upper bounds: if x ∈ D satisfies fi(x) ≤ 0 and hj(x) = 0
for all i and j , then: p? ≤ f0(x).

� Any feasible x yields an upper bound for p?.
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Lower bounds

Optimization problem (not necessarily convex!):

minimize
x∈D

f0(x)

subject to: fi(x) ≤ 0 for i = 1, . . . ,m

hj(x) = 0 for j = 1, . . . , r

� As with LPs, use the constraints to find lower bounds

� For any λi ≥ 0 and νj ∈ R, if x ∈ D is feasible, then

f0(x) ≥ f0(x) +
m∑
i=1

λi fi(x) +
r∑

j=1

νjhj(x)
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Lower bounds

f0(x) ≥ f0(x) +
m∑
i=1

λi fi(x) +
r∑

j=1

νjhj(x)︸ ︷︷ ︸
Lagrangian L(x , λ, ν)

This is a lower bound on f0, but we want a lower bound on p?.
Minimize right side over x ∈ D and left side over feasible x .

p? ≥
{

inf
x∈D

L(x , λ, ν)

}
= g(λ, ν)

This inequality holds whenever λ ≥ 0.
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Lower bounds

L(x , λ, ν) := f0(x) +
m∑
i=1

λi fi(x) +
r∑

j=1

νjhj(x)

Whenever λ ≥ 0, we have:

g(λ, ν) :=

{
inf
x∈D

L(x , λ, ν)

}
≤ p?

Useful fact: g(λ, ν) is a concave function. This is true even
if the original optimization problem is not convex!
(because g is a pointwise minimum of affine functions)
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General duality

Primal problem (P)

minimize
x∈D

f0(x)

subject to: fi(x) ≤ 0 ∀i
hj(x) = 0 ∀j

Dual problem (D)

maximize
λ,ν

g(λ, ν)

subject to: λ ≥ 0

If x and λ are feasible points of (P) and (D) respectively:

g(λ, ν) ≤ d? ≤ p? ≤ f0(x)

This is called the Lagrange dual. Bad news: strong duality
(p? = d?) does not always hold!
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Example (Srikant)

minimize
x

x2 + 1

subject to: (x − 2)(x − 4) ≤ 0
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� optimum occurs at x = 2, has value p? = 5
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Example (Srikant)

Lagrangian: L(x , λ) = x2 + 1 + λ(x − 2)(x − 4)
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� Plot for different values of λ ≥ 0

� g(λ) = infx L(x , λ) should be a lower bound on
p? = 5 for all λ ≥ 0.
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Example (Srikant)

Lagrangian: L(x , λ) = x2 + 1 + λ(x − 2)(x − 4)

� Minimize the Lagrangian:

g(λ) = inf
x

L(x , λ)

= inf
x

(λ + 1)x2 − 6λx + (8λ + 1)

If λ ≤ −1, it is unbounded. If λ > −1, the minimum
occurs when 2(λ + 1)x − 6λ = 0, so x̂ = 3λ

λ+1
.

g(λ) =

{
−9λ2/(1 + λ) + 1 + 8λ λ > −1

−∞ λ ≤ −1
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Example (Srikant)

maximize
λ

− 9λ2/(1 + λ) + 1 + 8λ

subject to: λ ≥ 0
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g(λ)

� optimum occurs at λ = 2, has value d? = 5

� same optimal value as primal problem! (strong duality)
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Constraint qualifications

� weak duality (d? ≤ p?) always holds. Even when the
optimization problem is not convex.

� strong duality (d? = p?) often holds for convex problems
(but not always).

A constraint qualification is a condition that guarantees
strong duality. An example we’ve already seen:

� If the optimization problem is an LP, strong duality holds
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Slater’s constraint qualification

minimize
x∈D

f0(x)

subject to: fi(x) ≤ 0 for i = 1, . . . ,m

hj(x) = 0 for j = 1, . . . , r

Slater’s constraint qualification:

If the optimization problem is convex and strictly
feasible, then strong duality holds.

� convexity requires: D and fi are convex and hj are affine.

� strict feasibility means there exists some x̃ in the interior of
D such that fi(x̃) < 0 for i = 1, . . . ,m.
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Slater’s constraint qualification

If the optimization problem is convex and strictly
feasible, then strong duality holds.

� Good news: Slater’s constraint qualification is rather weak.
i.e. it is usually satisfied by convex problems.

� Can be relaxed so that strict feasibility is not required for
the linear constraints.
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Counterexample (Boyd)

minimize
x∈R, y>0

e−x

subject to: x2/y ≤ 0

� The function x2/y is convex
for y > 0 (see plot)

� The objective e−x is convex

� Feasible set: {(0, y) | y > 0}

� Solution is trivial (p? = 1)
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Counterexample (Boyd)

minimize
x∈R, y>0

e−x

subject to: x2/y ≤ 0

� Lagrangian: L(x , y , λ) = e−x + λx2/y

� Dual function: g(λ) = infx ,y>0 (e−x + λx2/y) = 0.

� The dual problem is:

maximize
λ≥0

0

So we have d? = 0 < 1 = p?.

� Slater’s constraint qualification is not satisfied!
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About Slater’s constraint qualification

Slater’s condition is only sufficient.
(Slater) =⇒ (strong duality)

� There exist problems where Slater’s condition fails,
yet strong duality holds.

� There exist nonconvex problems with strong duality.
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Complementary slackness

Assume strong duality holds. If x? is primal optimal and
(λ?, ν?) is dual optimal, then we have:

g(λ?, ν?) = d? = p? = f0(x?)

f0(x?) = g(λ?, ν?) = inf
x∈D

(
f0(x) +

m∑
i=1

λ?i fi(x) +
r∑

j=1

ν?j hj(x)

)

≤ f0(x?) +
m∑
i=1

λ?i fi(x
?) +

r∑
j=1

ν?j hj(x
?)

≤ f0(x?)

The last inequality holds because x? is primal feasible. We
conclude that the inequalities must all be equalities.
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Complementary slackness

� We concluded that:

f0(x?) = f0(x?) +
m∑
i=1

λ?i fi(x
?) +

r∑
j=1

ν?j hj(x
?)

But fi(x
?) ≤ 0 and hj(x

?) = 0. Therefore:

λ?i fi(x
?) = 0 for i = 1, . . . ,m

� This property is called complementary slackness. We’ve
seen it before for linear programs.

λ?i > 0 =⇒ fi(x
?) = 0 and fi(x

?) < 0 =⇒ λ?i = 0
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Dual of an LP

minimize
x≥0

cTx

subject to: Ax ≥ b

� Lagrangian: L(x , λ) = cTx + λT(b − Ax)

� Dual function: g(λ) = min
x≥0

(c − ATλ)Tx + λTb

g(λ) =

{
λTb if ATλ ≤ c

−∞ otherwise
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Dual of an LP

minimize
x≥0

cTx

subject to: Ax ≥ b

� Dual is:

maximize
λ≥0

λTb

subject to: ATλ ≤ c

� This is the same result that we found when we were
studying duality for linear programs.
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Dual of an LP

What if we treat x ≥ 0 as a constraint instead? (D = Rn).

minimize
x

cTx

subject to: Ax ≥ b

x ≥ 0

� Lagrangian: L(x , λ, µ) = cTx + λT(b − Ax)− µTx

� Dual function: g(λ, µ) = min
x

(c − ATλ− µ)Tx + λTb

g(λ) =

{
λTb if ATλ + µ = c

−∞ otherwise
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Dual of an LP

What if we treat x ≥ 0 as a constraint instead? (D = Rn).

minimize
x

cTx

subject to: Ax ≥ b

x ≥ 0

� Dual is:

maximize
λ≥0, µ≥0

λTb

subject to: ATλ + µ = c

� Solution is the same, µ acts as the slack variable.
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Dual of a convex QP

Suppose Q � 0. Let’s find the dual of the QP:

minimize
x

1
2
xTQx

subject to: Ax ≥ b

� Lagrangian: L(x , λ) = 1
2
xTQx + λT(b − Ax)

� Dual function: g(λ) = min
x

(
1
2
xTQx + λT(b − Ax)

)
Minimum occurs at: x̂ = Q−1ATλ

g(λ) = −1
2
λTAQ−1ATλ + λTb
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Dual of a convex QP

Suppose Q � 0. Let’s find the dual of the QP:

minimize
x

1
2
xTQx

subject to: Ax ≥ b

� Dual is also a QP:

maximize
λ

− 1
2
λTAQ−1ATλ + λTb

subject to: λ ≥ 0

� It’s still easy to solve (maximizing a concave function)
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Sensitivity analysis

min
x∈D

f0(x)

s.t. fi(x) ≤ ui ∀i
hj(x) = vj ∀j

max
λ,ν

g(λ, ν)− λTu − νTv
s.t. λ ≥ 0

� As with LPs, dual variables quantify the sensitivity of the
optimal cost to changes in each of the constraints.

� A change in ui causes a bigger change in p? if λ?i is larger.

� A change in vj causes a bigger change in p? if ν?j is larger.

� If p?(u, v) is differentiable, then:

λ?i = −∂p
?(0, 0)

∂ui
and ν?j = −∂p

?(0, 0)

∂vj

15-25


	Duality
	Upper and lower bounds
	General duality
	Constraint qualifications
	Counterexample
	Complementary slackness
	Examples
	Sensitivity analysis


